Modern semiconductor switches using Wide Band Gap (WBG) technologies and even MOSFETs and some IGBTs are capable of extremely fast switching. This reduces dissipation during switching transitions allowing higher frequency operation at high efficiency, higher power density, smaller passive components and lower cost. However, there is a downside of increased EMI and stress on gate drive insulation systems due to high dV/dt and di/dt levels. Figure 1 shows a typical gate drive circuit for an IGBT applying a positive voltage between 5V and 20V to switch the device ON and 0V to switch it OFF. Statically, this circuit also works perfectly well for enhancement mode Si MOSFETs and WBG devices in SiC and GaN technology – in all cases the device is guaranteed to be off with continuous gate 0V applied.
Fig. 1: Simplistic gate drive circuit
However, problems occur when the device is switched fast and parasitic capacitive and inductive elements, as shown in Figure 2, come into play.
Fig. 2: Gate drive with parasitic elements included
If we take the example of a di/dt figure for drain-source current of 10A/ns, which is feasible with state-of-the-art GaN devices, and a source inductance of 15nH, according to V = - L di/dt, 150V appears across the inductor. On switch-off, the voltage drags the source negative, opposing the gate drive and on switch-on, the direction is positive, again opposing gate drive. The consequence can be loss of efficiency and even damage due to spurious turn-on causing shoot-through. 15nH may seem large but represents only about 25mm of PCB track. Even a PCB via has an inductance of about 1.2nH producing a 12V transient. In practice at these high di/dt levels, only chip-scale packaging is practical with Kelvin connections to the gate and source for the gate drive. Driving the gate with a negative voltage for the off-state helps when some inductance cannot be avoided.
In real circuits such as push-pull or full-bridges in inverters or motor control, two low-side devices often share a common return for source and gate drive current as shown in Figure 3.
Fig. 3: Low-side devices sharing common grounds
Now Kelvin connections are not possible as there are two drivers, each with their own return. The two driver grounds and two emitter (source) connections must connect together and if this point is, say, physically at Powergnd 1, close to the left-hand switch, the right-hand switch would see more source connection inductance than the left, leading to asymmetrical switching, potential EMI and damage due to induced voltages across the inductance. For symmetry, the point ‘Powergnd 2’ is the only option but is a poor compromise as now both sources have equal but large connection inductances in the gate drive loop, particularly in high power systems where the devices may not be physically close.
A solution is to provide isolated signals and power supplies to the two gate drivers as shown in Figure 4. Now the driver signal and power returns can connect directly to their respective device emitters (sources), excluding most external inductances from the drive loops.
Fig. 4: Gate drives incorporating signal and power isolation with Kelvin connections

Fig. 1: Simplistic gate drive circuit
However, problems occur when the device is switched fast and parasitic capacitive and inductive elements, as shown in Figure 2, come into play.

Fig. 2: Gate drive with parasitic elements included
If we take the example of a di/dt figure for drain-source current of 10A/ns, which is feasible with state-of-the-art GaN devices, and a source inductance of 15nH, according to V = - L di/dt, 150V appears across the inductor. On switch-off, the voltage drags the source negative, opposing the gate drive and on switch-on, the direction is positive, again opposing gate drive. The consequence can be loss of efficiency and even damage due to spurious turn-on causing shoot-through. 15nH may seem large but represents only about 25mm of PCB track. Even a PCB via has an inductance of about 1.2nH producing a 12V transient. In practice at these high di/dt levels, only chip-scale packaging is practical with Kelvin connections to the gate and source for the gate drive. Driving the gate with a negative voltage for the off-state helps when some inductance cannot be avoided.
In real circuits such as push-pull or full-bridges in inverters or motor control, two low-side devices often share a common return for source and gate drive current as shown in Figure 3.

Fig. 3: Low-side devices sharing common grounds
Now Kelvin connections are not possible as there are two drivers, each with their own return. The two driver grounds and two emitter (source) connections must connect together and if this point is, say, physically at Powergnd 1, close to the left-hand switch, the right-hand switch would see more source connection inductance than the left, leading to asymmetrical switching, potential EMI and damage due to induced voltages across the inductance. For symmetry, the point ‘Powergnd 2’ is the only option but is a poor compromise as now both sources have equal but large connection inductances in the gate drive loop, particularly in high power systems where the devices may not be physically close.
A solution is to provide isolated signals and power supplies to the two gate drivers as shown in Figure 4. Now the driver signal and power returns can connect directly to their respective device emitters (sources), excluding most external inductances from the drive loops.

Fig. 4: Gate drives incorporating signal and power isolation with Kelvin connections